How to run Python code on NVIDIA GPU
To run you python code on NVDIA GPU , it is necessary to install all the dependent software like install VS2017, install CUDA Toolkit, Install cuDNN, install Tensor flow GPU, install keras and pytorch. further more you can read python CUDA set up on window .
It is necessary to check the GPU is working or not using python code.
So let start….
Install basic libraries
import os import numpy as np from tensorflow.keras.preprocessing.image import ImageDataGenerator import keras from tensorflow import keras import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.utils import to_categorical import warnings warnings.filterwarnings('ignore') from tensorflow.keras.models import load_model from tensorflow.keras.utils import plot_model from keras.utils.vis_utils import plot_model from tensorflow.python.platform import build_info as tf_build_info import sys import glob
Print the different vision of important dependent modules
python version
Tensorflow version ,
keras version
cuda version
print('Python version : ', sys.version) print('TensorFlow version : ', tf.__version__) print('Keras version : ', keras.__version__) sys_details = tf.sysconfig.get_build_info() cuda_version = sys_details["cuda_version"] print(cuda_version) cudnn_version = sys_details["cudnn_version"] print(cudnn_version) Python version : 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [MSC v.1927 64 bit (AMD64)] TensorFlow version : 2.4.2 Keras version : 2.4.0 64_110 64_8
We can check the GPU is available or not by ..
tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None) True
Check how many GPUs are already attached.
import tensorflow as tf print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) Num GPUs Available: 1
Read more: Radiomic texture feature